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Abstract: We introduce the notion of an essential copy in a topological space. Then we present a classification of 

topological spaces based on this notion. In addition, we obtain some results regarding this classification. 
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1  Introduction 

Current progress of topology continues to show its applications in different disciplines such as chemistry, 

information systems, quantum physics, biology and dynamical systems, see [5], [6], [3] and [7]. The basic 

concept that lies behind all in topology is the idea of being homeomorphic, which fits with the ideas of 

congruence and similarity. This idea plays an important role in different applications. For instance, in [4] 

Latecki, Conrad, and Gross worked on the problem of recognizing the properties of real objects based on 

their digital image obtained by some sampling device like a CCD camera. They derived a topological 

model of a well-composed digital image which guarantees that a real object and its digital image are 

topologically equivalent (homeomorphic). Also, in [1] Bazin and Pham explored the use of topological 

information as a prior and proposed a segmentation framework based on both topological and statistical 

atlases of brain anatomy. Their method guarantees strict topological equivalence between the segmented 

image and the atlas, and relies only weakly on a statistical atlas of shape. 

     

The main purpose of the present paper is to introduce the notion of an essential copy in a topological 

space, which is simply an open set that is homeomorphic to the whole space. This notion enables us to 

introduce a new classification of topological spaces which measures in some sense how a topological space 

copies itself within its open subspaces. The outline of this paper goes as follows: in Section 2, we 

introduce the definition of ecopied and 0-ecopied topological spaces, and present some examples of them. 

Then we obtain some results regarding these spaces. In Secion 3, we introduce a classification of ecopied 

spaces and give some properties. In Section 4, we study denseness in ecopied spaces and study the 

relationship between some ecopied spaces and D-spaces. We close this paper with Section 5 where we 

study separation axioms in ecopied spaces. 

    Thought this paper, R denotes the set of real numbers, uτ denotes the usual topology on R or 
nR for 

2n ≥ , and 
indisc

τ denotes the indiscrete topology. Also, 
lr

τ  denotes the left ray topology on R , 
disc

τ  

denotes the discrete topology, and N denotes the set of natural numbers. 

  

2  0-ecopied topological spaces 

 
In this section we introduce the definition of essentially copied and 0-copied topological spaces. Then we 

discuss some properties of these spaces and present some examples. We start with the definition of an 

essential copy in a topological space. 
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Definition 2.1. Let ( ),X τ  be a topological space. An essential copy (simply: ecopy) of ( ),X τ  is an 

open proper subset C of X  that is homeomorphic to X . The set of all ecopies of the topological space 

( ),X τ  is denoted by ( ),EC X τ .  

 

Definition 2.2. The topological space ( ),X τ is said to be essentially copied (simply: ecopied) if the set 

( ),EC X τ  is non-empty. The topological space ( ),X τ  is said to be 0-ecopied if it is not ecopied. 

 

Theorem 2.1. The homeomorphic image of an ecopy is an ecopy. 

 

Proof.  Let ( ) ( )1 1 2 2: , ,f X Xτ τ→  be a homeomorphism, and let 
1

C be an ecopy of 
1

X . Then there is a 

homeomorphism ( ) ( )
11 1 1 1: , ,Cg C Xτ τ→ . Let ( )2 1C f C= . Note that 2C  is an open proper subset of 

2
X . Moreover, ( ) ( )

2 2

1

1 2 2 2: , ,C Cf g f C Xτ τ− →o o  is a homeomorphism. Hence 
2

C is an ecopy of 
2

X . 

 

Corollary 2.1. The property of being an ecopied topological space is a topological property. 

 

Theorem 2.2. If 
1C  is an ecopy of ( ),X τ , and 

2C is an ecopy of 
1C , then 

2C  is an ecopy of ( ),X τ . 

 

Proof.  Note that 
2

C  is an open proper subset of X  since 
1

C  is. Moreover, if ( ) ( )
11 1: , ,Cg C Xτ τ→ , 

and ( ) ( )
2 12 2 1

: , ,
C C

g C Cτ τ→ are homeomorphisms, then ( ) ( )
21 2 2

: , ,
C

g g C Xτ τ→o  is a 

homeomorphism too. Hence 
2C  is an ecopy of X . 

 

Theorem 2.3. If 0C  is an ecopy of the ecopied topological space ( ),X τ , then there exists a sequence of 

ecopies { }:nC n ∈ Ν such that 1 0n nC C C+ ⊂ ⊂ . 

 

Proof.  Note From Corollary 2.1, it follows that ( )
00 , CC τ is ecopied and hence it has an ecopy 

1
C . Using 

Theorem 2.2, it follows that 
1C  is an ecopy of ( ),X τ . Similarly, ( )

11
,

C
C τ has an ecopy, call it 

2C . If we 

continue in this way the proof will end up by the required sequence. 

 

Corollary 2.2. An ecopied topological space has infinitely many ecopies. 

 

Corollary 2.3. Let ( ),X τ be a topological space. If τ  is finite then ( ),X τ is 0-ecopied. 

 

Theorem 2.4. A compact Hausdorff space that consists of finitely many connected components is 0-

ecopied. 

 

Proof. Let ( ),X τ  be a compact Hausdorff  topological space with a finite number of connected 

components 
1 2
, ,...,

n
A A A , and suppose to the contrary that there exists an ecopy C  of ( ),X τ . Then C  

is a compact subset of the Hausdorff topological space ( ),X τ , and hence C  is a closed subset of X . 

Now, C  is clopen in the connected topological space ( ),X τ  and hence C  is the union of a proper sub-

collection of { }1 2, ,..., nA A A , which cannot be homeomorphic to X , a contradiction.  
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Corollary 2.4. A compact connected Hausdorff topological space is 0-ecopied. 

 

Corollary 2.5. A compact connected subspace of ( ),n

u
R τ is 0-ecopied. 

 

Theorem 2.5. A connected subspace of ( ), uR τ is 0-ecopied if and only if it is compact. 

 

Proof. A connected subspace I  of R  is an interval. If I  is an open interval, then I  is an ecopy of 

( )R,
u

τ and by Corollary 2.1, it is ecopied. If ( ],I a b= , then ,
2

a b
b

+ 
  

 is an ecopy of I . If 

( ],I a= −∞ , then ( ]1,a a− is an ecopy of I . If [ ],I a b= , then a proposed copy of I  should be 

connected and compact, say[ ] [ ], ,c d a b⊂ , which fails to be open in [ ],a b . Hence the only connected 0-

ecopied subspace of ( ), uR τ  is the closed bounded interval [ ],a b , which is compact. 

 

The following example shows that a 0-ecopied connected subspace of ( )2 , uR τ need not be compact in 

general. 

 

Example 2.1. (A 0-ecopied connected subspace of 
2R that is not compact). Let 

2A R⊂  be defined by 

A P S= ∪ , where ( ){ }0,0P =  and ( ]
1

,sin : 0,1S x x
x

   
= ∈   

   
. Note that A is connected, not 

compact (not closed). Next, we show that A is 0-ecopied. If C  is an ecopy of A , then C  is a connected, 

not path-connected proper subset of A  homeomorphic to A . Hence ( ){ }2, :C A x y R x a= ∩ ∈ ≤ for 

some ( )0,1a ∈ , which is not open in A . 

3  Classification of essentially copied topological spaces 
 

In this section we introduce a classification of essentially copied topological spaces. Then we obtain some 

results concerning this classification. 

 

Definition 3.1.  For an ecopied topological space ( ),X τ , denote the set  

( ){ }1 2 1 2 1 2, :  and  for each ,  with A  A EC X A A A A A A Aτ φ φ⊆ ≠ ∩ = ∈ ≠  

by ( ),PDEC X τ . 

 

Theorem 3.1.  Let ( ),X τ  be an ecopied topological space. If ( ),A PDEC X τ∈  with 2A = ; then for 

every natural number n , there exists ( ),nA PDEC X τ∈  such that 2n

nA = . 

 

Proof.  By mathematical induction. From the assumption the result is true for 1n = . Now let k  be any 

natural number such that there exists ( ),kA PDEC X τ∈  with 2k

kA = , say { }1 2 2
, ,..., kk

A C C C= . 

For each 1 i k≤ ≤ , ( ) ( ), ,
ii CC Xτ τ≅ and hence it has two disjoint ecopies, say 

1 2
 and 

i i
C C . Let 

{ }
1 21
, :1 2k

k i i
A C C i+ = ≤ ≤ . Applying Theorem 2.2 we get that ( )1 ,kA EC X τ+ ⊆ . Therefore, 

( )1 ,kA PDEC X τ+ ∈  with 
1

1 2k

kA
+

+ = . 
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Corollary 3.1.  Let ( ),X τ  be an ecopied topological space. If ( ),A PDEC X τ∈  with 2A = , then 

there exists ( ),B PDEC X τ∈  with B ϑ= o . 

 

The previous result leads us to the following definitions. 

 

Definition 3.2.  Let ( ),X τ  be an ecopied topological space and let 1α = or an infinite cardinal number. 

Then ( ),X τ  is called -ecopiedα  if there exists ( )0 ,A PDEC X τ∈  such that 
0A α=  and A α≤  for 

every ( ),A PDEC X τ∈ . If ( ),X τ  is an -ecopiedα  for which α ϑ= o  then we say that ( ),X τ  is 

denumerably ecopied, and if α ϑ> o , then we say that ( ),X τ  is uncountablly ecopied. If ( ),X τ  is 

either denumerably ecopied or uncountablly ecopied then we call it infinitely ecopied. 

 

Definition 3.3 The least cardinality of a dense set of a topological space ( ),X τ  is called the density of the 

space and is denoted by ( ),d X τ . 

 

Theorem 3.2.  If ( ),X τ  is an -ecopiedα  topological space where 1α =  or α  is an infinite cardinal 

number, then ( ),d Xα τ≤ . 

 

Proof.  Let ( ),A PDEC X τ∈ . Choose a dense subset D X⊆ such that ( ),d X Dτ = . For every 

B A∈  choose ( )x B B D∈ ∩ . Then  

( ){ } ( ): ,A x B B A D d Xα τ= ∈ ≤ ≤ = . 

 

Corollary 3.2.  A separable ecopied topological space is either 1-ecopied  or -ecopiedϑ o . 

 

Corollary 3.3.  For every natural number n , ( ),n

u
R τ  is -ecopiedϑ o . 

 

Example 3.1. The set R  with the left ray topology is a 1-ecopied  topological space.  

 

Example 3.2. Let α  be any infinite cardinal number and let X  be a set with X α= . We are going to 

show that ( ), discX τ  is an -ecopiedα topological space. Choose a bijection :f X X X→ × . Let 

{ }( )1

xC f X x
−= × , x X∈ . Note that  

{ } ( ): ,x discC x X PDEC X τ∈ ∈ , { }:xC x X α∈ =  and ( ), discd X τ α= . 

Therefore, by Theorem 3.2, it follows that ( ), discX τ  is -ecopiedα .  

 

Theorem 3.3.  1-ecopied  and -ecopiedα  are topological properties. 

 

Remark 3.1.  1-ecopied  are not separable in general as the set R  with the co-countable topology is a 

1-ecopied  topological space that is not separable.  

 

The following is an example of an -ecopiedϑ o  topological space that is not separable. 
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Example 3.3.  Let 
1X R= , { }( ) { }( )2 1 2X R R= × ∪ × , 

1τ  be the usual topology on 
1X , 

2τ  be the 

discrete topology on 
2

X , 
1 2

X X X= ∪ , and τ  be the topology on X  having 
1 2

τ τ∪  as a base. Since 

( )1 1,X τ  is connected and ( )2 2,X τ  is a discrete topological space, it follows that C  is an ecopy of 

( ),X τ if and only if 
1 2

C C C= ∪  where ( ) { }1 1 1 1,C EC X Xτ∈ ∪ and ( ) { }2 2 2 2,C EC X Xτ∈ ∪ . 

Since ( ) { }0,1 1R∪ × and ( ) { }2,3 2R∪ ×   are disjoint ecopies of ( ),X τ , then by Corollary 3.1 it 

follows that there exists ( ),B PDEC X τ∈  such that B ϑ= o . Moreover, let ( ),A PDEC X τ∈ . For 

each D A∈ , there exists an open interval ( )I D  and a subset ( ) 2J D X⊆  with ( ) 2J D X=  such 

that ( ) ( )D I D J D= ∪ . It is clear that ( ){ } ( )1 1: ,I D D A PDEC X τ∈ ∈ . Thus, by Corollary 3.2, it 

follows that A ϑ≤ o . Hence ( ),X τ  is -ecopiedϑ o . On the other hand, if ( ),X τ  is separable then the 

open subspace ( )2 2,X τ  is separable, which is impossible. Therefore, ( ),X τ  is not separable. 

4  Densely and basically essentially copied topological spaces 
 

Definition 4.1.  A topological space ( ),X τ  is said to be a D-space if every non-empty open subset of X  

is dense. 

Remark 4.1.  D-spaces are not ecopied in general as ( ),R τ , where { }{ }, , 0Xτ φ= , is a D-space that is a 

0-ecopied. 

Definition 4.2.  A topological space ( ),X τ  is said to be: 

(1) Ecopied D-space if it is D-space and ecopied. 

(2) Densely ecopied if every ecopy of ( ),X τ  is dense. 

Theorem 4.1.  

 (1) Every ecopied D-space is densely ecopied. 

(2) Every densely ecopied topological space is 1-ecopied . 

Proof. 

(1) Let ( ),X τ  be an ecopied D-space topological space and let C be an ecopy of ( ),X τ . Since ( ),X τ  

is D-space, it follows that the non-empty open set C is dense. Therefore, ( ),X τ  is densely ecopied. 

(2) If ( ),X τ  is a densely ecopied topological space then any ecopy of ( ),X τ  must intersect all non-

empty open subsets of X and so it intersects all ecopies of ( ),X τ . Therefore, ( ),X τ  is1-ecopied . 

 

The following examples show, respectively, that each of the implications in Theorem 4.2 is not true in 

general. 

 

Example 4.1.  Consider the set { },X R a b= ∪  with the topology τ  having  

{ } { } { }{ }: 0 ,B U R U a b= ⊆ ∈ ∪  

as a base. Let { }, ,
2 2

A a b
π π− 

= ∪ 
 

. Then A τ∈  . Moreover, it is not difficult to see that the function 

( ) ( ): , ,Af A Xτ τ→ , where 
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( )
{ }

tan if ,
2 2

if ,

x x
f x

x x a b

π π − 
∈  

=   
 ∈ 

, 

is a homeomorphism. Therefore, ( ),A EC X τ∈  and hence ( ),X τ  is ecopied. Also, it is not difficult to 

see that the dense subset { }0, ,a b  of X is contained in any ecopy of X and hence ( ),X τ  is densely 

ecopied. On the other hand, since { }a  is open in X  that is not dense, it follows that ( ),X τ  is not 

densely D-space. 

Example 4.2. Consider the set ( )X R N N= ∪ × with the topology τ  having  

{ } { }{ }: 0 :B U R U x x N N= ⊆ ∈ ∪ ∈ ×  

as a base. Let ( ){ }1,1A X= − . Then A τ∈ . Choose a bijection ( ){ }: 1,1g N N N N× → × − . Define 

( ) ( ): , , Af X Aτ τ→  where 

( )
( )

if 

if 

x x R
f x

g x x N N

∈ 
=  

∈ × 
. 

Then f is a homeomorphism. Therefore, ( ),A EC X τ∈  and hence ( ),X τ  is ecopied. Moreover, since 

( ){ }1,1  is a non-empty open subset of X  and ( ){ }1,1 A φ∩ = , then A  is an ecopy of ( ),X τ  which is 

not dense. This shows that ( ),X τ  is not densely ecopied. Also, it is not difficult to see that every ecopy of 

( ),X τ  must contain 0 and hence ( ),X τ  is 1-ecopied . 

Definition 4.3.  A topological space ( ),X τ  is said to be: 

(1) Totally ecopied if every non-empty proper subset of X is an ecopy. 

(2) Basically ecopied if τ has a basis of copies. 

 

Remark 4.2. 

(1) Every totally ecopied topological space is basically ecopied. 

(2) Basically ecopied topological space are not totally ecopied in general as ( ),n

u
R τ  is a basically 

ecopied topological space that is not totally ecopied. 

(3) Totally ecopied topological space are not infinitely ecopied in general as ( ), lrR τ  is a totally 

ecopied topological space that is 1-ecopied . 

 

Lemma 4.1.  [2] For the topological space ( ), sR τ , the Sorgenfrey space,  a subset A R⊆  is 

homeomorphic to R if and only if A  has no isolated points and is both an Gδ  and an Fσ  subset of R . 

 

Example 4.3.  (The Sorgenfrey line is an example of an -ecopiedϑ o  topological space that is totally 

ecopid). If C is a nonempty open subset of ( ), sR τ , then there exists a family [ ){ }, :a bα α α ∈ ∆  such that 

[ ),C a bα α
α∈∆

= U . Since ( ), sR τ  hereditarily Lindelöf, S then there exists a countable subset Ω ⊆ ∆ such 

that [ ),C a bα α
α∈Ω

= U . Since [ ),a bα α is closed in R for everyα ∈Ω , it follows that C  is an Fσ . Also, it 

is clear that C  has no isolated points and isGδ . Therefore, by Lemma 4.1, it follows that ( ), sC R τ∈ and 

hence ( ), sR τ is totally ecopid. 
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On the other hand, since ( ), sR τ has two disjoint open sets, then by Theorem 3.2, it is infinitely ecopied. 

Since ( ), sR τ is separable, then by Corollary 3.2, ( ), sR τ  is -ecopiedϑ o . 

Theorem 4.2.  Let ( ),X τ  be a basically ecopied topological space. Then the following are equivalent. 

(1) ( ),X τ  is D-space. 

(2) ( ),X τ  is densely ecopied. 

(3) ( ),X τ  is 1-ecopied. 

Proof.  (1) =) (2) and (2) =) (3) follow from Theorem 4.1. To prove (3) =) (1), suppose to the contrary that 

there exists a non-empty open set U in X that is not dense. Then there exists a non-empty open set V in 

X such that U V φ∩ = . Now by the assumption that ( ),X τ is basically ecopied, it follows that there 

exist ( )1 2, ,C C EC X τ∈ such that 
1

C U⊆ and 
2

C V⊆ and hence
1 2

C C φ∩ = , a contradiction.  

 

Corollary 4.1.  Let ( ),X τ  be a totally ecopied topological space. Then the following are equivalent. 

(1) ( ),X τ  is D-space. 

(2) ( ),X τ  is densely ecopied. 

(3) ( ),X τ  is 1-ecopied . 

 

5  Ecopied topological spaces and separation axioms 
 

Example 5.1.  (An example of a 1-ecopied  D-space that is not a 
0
-spaceT ) Consider the set X R= with 

the topology [ ]{ }: 1,1U R Uτ = ⊆ − ⊆ . Let ,
2 2

A
π π− 

=  
 

. Then A τ∈  . Moreover, it is easy to see that 

the function ( ) ( ): , ,Af A Xτ τ→ , where 

( )
if 1

tan if 1<
2

x x

f x
x x

π

 ≤ 
 

=  
<  

 

is a homeomorphism. Therefore, ( ),A EC X τ∈ and hence ( ),X τ  is ecopied. Also, it is clear that any 

two copies of ( ),X τ  must intersect and ( ),X τ  is an D-space and not a 0 -spaceT . 

 

Remark 5.1.  Every D-space is not Hausdorff. 

Theorem 5.1.  Every basically ecopied 1-ecopied  topological space in not Hausdorff. 

Proof.  Follows from Theorem 4.2 and Remark 5.1.  

Remark 5.2.  The property Hausdorff  in Theorem 5.1 cannot be replaced by the property 
1" "T . In fact, 

any infinite set with the cofinite topology is a totally ecopied 1-ecopied  topological space that is 
1

T . 

 

We close this section with answering the following question: 

Is it true that every basically ecopied infinitely ecopied topological space is Hausdorff? 
 

The following example gives a negative answer. 

 

Example 5.2. The product topological space of the topological spaces ( ), uR τ and ( ), indiscR τ is a basically 

ecopied infinitely ecopied topological space that is not Hausdorff. 
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 6  Conclusion 
The notion of an essential copy in a topological space plays an important role in classifying topological 

spaces. This notion measures in some sense how a topological space copies itself within its open 

subspaces. In addition, many topological concepts can be studied in different classes of ecopied 

topological spaces, whose definition is based on this new notion of essential copy. 
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